Автор Тема: всё о космосе  (Прочитано 46074 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн batkov

Re: всё о космосе
« Ответ #75 : 16 Ноябрь 2020, 19:04:05 »
За год на орбите “Спектр-РГ” обнаружил 10 неизвестных галактик с активными ядрами
 15:19 15/11/2020
 


Космическая обсерватория “Спектр-РГ”, работающая в 1,5 млн км от Земли, помогла обнаружить десять неизвестных ранее галактик с активными ядрами. Об этом рассказывается в видео, размещенном на канале “Роскосмос ТВ” в YouTube.

Spoiler for Hiden:
Как отмечается в сюжете, за год на орбите обсерваторией “Спектр-РГ” построены карты Вселенной с беспрецедентным разрешением. “За это время ученые обнаружили 10 абсолютно новых, ранее неизвестных галактик с активными ядрами – сверхмассивными черными дырами, которые в данный момент поглощают звезды, планеты и межзвездный газ”, – говорится в видео.

В свою очередь завлабораторией экспериментальной астрофизики ИКИ РАН Сергей Сазонов отметил, что несколько недель назад с помощью обсерватории “Спектр-РГ” был открыт новый далекий квазар на красном смещении 5,5. “Такие квазары очень редкие, и вот мы открыли новый, сняли спектр этого объекта и померили его смещение. Мы понимаем, что этот далекий квазар – это огромная черная дыра с массой миллиард солнечных масс, которая очень активная”, – отметил он.

Космический аппарат “Спектр-РГ” был разработан в НПО им. С. А. Лавочкина (входит в Роскосмос). Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория сканирует небо в широком энергетическом диапазоне с высокой чувствительностью и угловым разрешением. В конце октября прошлого года она успешно достигла рабочей орбиты, расположенной в точке L2.

Работой обсерватории управляет НПО Лавочкина. Данные с телескопов принимаются в Центрах Дальней космической связи в Медвежьих Озерах, Уссурийске, Байконуре. Их обработкой занимаются в том числе аспиранты и молодые ученые.

Это второй аппарат из линейки “Спектров”, который занял место “Спектра-Р” (его миссия завершена) в статусе единственного российского научно-космического проекта. На его борту размещены два рентгеновских телескопа: российский ART-XC, который назван в честь создателя Михаила Павлинского. и германский eROSITA. Первый обзор неба был завершен в июне.
 
Пользователи, которые поблагодарили этот пост: Mika, TU-134, parisan, amator, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #76 : 18 Ноябрь 2020, 16:07:07 »
Гравитационные линзы позволяют измерить расширение Вселенной
 14:56 18/11/2020
 


Одним из ключевых вопросов космологии является определение точной скорости расширения Вселенной. Два современных метода определения этой скорости дают различные, противоречивые значения. В новом исследовании физик Дэвид Харви (David Harvey) из Лейденского университета, Нидерланды, адаптировал для этих целей третий, независимый метод, основанный на измерениях свойства галактик искажать траекторию света, которое предсказал в свое время Эйнштейн.

Spoiler for Hiden:
О том, что Вселенная расширяется, нам известно на протяжении уже примерно 100 лет. Астрономы заметили, что свет, идущий от далеких галактик, характеризуется большей длиной волны, по сравнению со светом, идущим со стороны близлежащих галактик. Световые волны наблюдаются растянутыми, или испытывающими красное смещение, что указывает на стремительное удаление от нас далеко расположенных галактик.

Эта скорость расширения, называемая постоянной Хаббла, может быть измерена. Согласно первому из современных методов, основанному на измерении яркостей источников с постоянной светимостью (сверхновых типа Ia), галактики удаляются от нас со скоростью, увеличивающейся на 73 километра в секунду на каждый мегапарсек расстояния. Однако альтернативный способ измерения постоянной Хаббла, основанный на точных измерениях параметров реликтового излучения Вселенной, дает значительно меньшее значение, составляющее не более 67 километров в секунду на мегапарсек.

Для выяснения причин этого расхождения Харви предлагает использовать известный метод, основанный на гравитационном линзировании. Эффект гравитационного линзирования состоит в том, что свет, идущий от далекого источника, претерпевает искажения в случае нахождения на линии наблюдения массивного объекта, например галактики. При смещении центра галактики относительно линии наблюдения траектории отдельных лучей света будут отличаться, поэтому в случае кратковременной вспышки на далеком источнике можно ожидать различную задержку сигнала для двух отдельных лучей света, связанную с увеличением длины траектории. Эта задержка позволяет независимым образом оценить расстояние до далекой галактики, что, в свою очередь, дает возможность рассчитать постоянную Хаббла.

Однако использование этого метода затруднено тем, что получаемое значение расстояния до далекой галактики зависит от свойств галактики-линзы. Чтобы избежать трудоемкого моделирования свойств галактик-линз, Харви предлагает использовать тысячи таких галактик, и затем усреднить их свойства без подробного моделирования. Это даст возможность определить постоянную Хаббла с ошибкой не более 2 процентов, указывает ученый.
 
Пользователи, которые поблагодарили этот пост: sogaz, boomer44, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #77 : 19 Ноябрь 2020, 15:09:53 »
Европейцы одобрили проект космического телескопа ARIEL
 19:22 18/11/2020
 


Европейское космическое агентство (ЕКА) официально одобрило проект нового космического телескопа ARIEL и разрешило начать процесс его создания. Ожидается, что телескоп будет запущен в 2029 году и проведет первое крупномасштабное исследование атмосфер тысячи экзопланет самых разных типов, сообщается на сайте агентства.

Spoiler for Hiden:
ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) стал четвертым космическим аппаратом для исследования экзопланет, который Европейское космическое агентство выбрало в 2018 году в рамках программы Cosmic Vision. Телескоп должен провести обзорные исследования атмосфер около тысячи экзопланет в оптическом и инфракрасном диапазонах, чтобы определить их химический состав, структуру, климатические условия, альбедо, распределение температуры в зависимости от высоты и наличие облаков. Предполагается, что это поможет разобраться в механизмах формирования и эволюции экзопланет, от скалистых суперземель до газовых гигантов, вращающихся вокруг звезд самых разных спектральных классов.

Стартовая масса телескопа составляет примерно 1300 килограммов, он состоит из двух термически изолированных друг от друга частей: служебного модуля (SVM) и модуля полезной нагрузки (PLM). В модуле SVM будут находиться топливный бак, солнечные панели, двигатели, работающие на гидразине, и антенна с высоким коэффициентом усиления.

В модуле PLM разместятся телескоп системы Кассегрена, а также инфракрасный спектрометр AIRS, работающий в диапазоне длин волн 1,95–7,8 микрометра, и система точного наведения, включающая трехканальный фотометр и спектрометр низкого разрешения, работающий в ближнем инфракрасном диапазоне. Главное зеркало телескопа будет иметь форму эллипса, с размерами примерно 1,1 на 0,7 метра, и сделано из алюминия. За счет пассивной системы охлаждения рабочая температура элементов телескопа будет поддерживаться на уровне около 55 кельвинов.

12 ноября 2020 года Европейское космическое агентство на заседании Комитета по научной программе официально одобрило разработанный проект телескопа — и ARIEL перешел в стадию создания. В ближайшие месяцы будут оформлены заявки на поставку элементов телескопа, а летом следующего года выберут главного подрядчика, который займется его сборкой.

В космос телескоп должен отправиться в 2029 году при помощи ракеты-носителя Ariane 6 с космодрома Куру, вместе с ним может полететь аппарат Comet Interceptor. ARIEL будет работать на гало-орбите вокруг второй точки Лагранжа в системе «Солнце–Земля», ожидается, что срок службы составит не менее 4 лет.
 
Пользователи, которые поблагодарили этот пост: Admin, Astra4A, Joker, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #78 : 20 Ноябрь 2020, 14:30:09 »
Глицин сформировался в условиях темного межзвездного облака
 19:27 19/11/2020
 


Астрофизики получили глицин в условиях межзвездного облака без внешнего энергетического воздействия и смоделировали процесс его формирования на ранней стадии рождения звезд. Ранее эту простейшую, но важную для возникновения жизни аминокислоту получали в схожих лабораторных условиях лишь под внешним воздействием излучения или пучка частиц. Такой результат говорит о том, что глицин и другая органика во вселенной могут быть распространены шире, чем считалось ранее. Статья опубликована в журнале Nature Astronomy, препринт работы доступен на сайте arXiv.org.

Spoiler for Hiden:
Изучение процессов формирования и распространения органики во вселенной крайне важно для нашего понимания того, как и при каких начальных условиях на Земле могла возникнуть жизнь. Глицин (H2N-CH2-COOH), в свою очередь, является характерным представителем этой органики – это простейшая аминокислота, которая входит в состав почти всех белков. Ранее его уже нашли в образцах с комет Вильда 2 и 67P/Чурюмова–Герасименко, и существуют указания на то, что обнаруженный глицин имеет межзвездное происхождение. Это значит, что часть наблюдаемой во вселенной простейшей органики могла возникнуть не в центральных областях планетезималей, как считалось ранее, а в межзвездном пространстве.

Последние лабораторные и теоретические исследования указывают на то, что глицин и другая органика и правда может формироваться в ледяных оболочках мельчайших пылевых зерен при внешнем энергетическом воздействии (им может быть нагрев, излучение или космические лучи), которое возможно на поздних стадиях формирования звезд. Однако подобное энергетическое воздействие при больших дозах может и разрушить уже возникшие аминокислоты, поэтому предполагается, что есть и пути формирование органики без внешнего энергетического триггера. Хорошими кандидатами на такие «холодные» источники глицина являются темные и плотные межзвездные облака на ранней стадии рождения звезд, аминокислоты в которых могут образовываться в ходе химических процессов в насыщенном примесями льде.

Теперь же группа ученых во главе с Серджио Иопполо (Sergio Ioppolo) провела эксперимент, в ходе которого глицин сформировался в условиях, воссоздающих слой льда на поверхности пылевых зерен в межзвездном облаке без участия внешнего энергетического воздействия. Для этого астрофизики изучали эволюцию состава льда, насыщенного метиламином, монооксидом углерода, кислородом и водородом, и охлажденного до 13 кельвин (при этой температуре в нем формируются OH радикалы, она же характерна для межзвездных облаков). Конечный состав льда исследователи изучали с помощью квадрупольного масс-спектрометра посредством термодесорбционного анализа – метода, в котором состав вещества изучают по десорбции молекул в процессе его нагрева. В результате ученые обнаружили в конечном составе льда глицин и его изотопологи.

Помимо эксперимента исследователи реализовали и астрохимическое моделирование ранних стадий формирования звезд, чтобы проверить, что проделанный опыт соответствовал реальным условиям происходящих во вселенной процессов. Астрофизики реализовали это двумя способами: с помощью метода кинетического Монте-Карло и более полной астрохимической модели MAGICKAL. Моделирование подтвердило формирование глицина в описанных выше условиях, а его количество в зависимости от модели и начальных условий оказалась в пределах между 3,5 × 10-5 и 0,07 процента относительно исходной массы воды во льде. Само формирование происходило на расстоянии порядка 1000 астрономических единиц от центра предзвездного ядра при температуре 10 кельвин.

Астрофизики подчеркивают важность полученных результатов: они косвенно указывают на то, что глицин может оказаться крайне распространенной во вселенной молекулой, ведь исследование расширило возможные условия для его формирования. От глицина, в свою очередь, недалеко до более сложной органики, которая также может образовываться из последнего в богатых льдом межзвездных облаках. Ученые отмечают и тот факт, что пока что глицин не был напрямую обнаружен в межзвездной среде, но возлагают надежды на телескоп Джеймса Уэбба, у которого должно хватить спектральной чувствительности для регистрации сложных органических молекул, в том числе и различных аминокислот.

Глицин можно обнаружить и в еще менее благоприятных условиях, чем холодные и плотной межзвездные облака: недавно мы рассказывали о том, что его следы нашли в атмосфере Венеры. Ранее ученым удалось доказать белковую природу органических полимеров, обнаруженных в метеоритах, и в его состав также вошли остатки глицина и его производных.
 
Пользователи, которые поблагодарили этот пост: 133048, batoni123, nina54

Оффлайн batkov

Re: всё о космосе
« Ответ #79 : 21 Ноябрь 2020, 12:53:35 »
Расщепленный черной дырой. Ученые — о тайнах быстрых радиовсплесков
 10:44 21/11/2020

Sophia Dagnello, NRAO/AUI/NSF, Depositphotos/JohanSwanepoel

Spoiler for Hiden:
Происхождение быстрых радиовсплесков — очень ярких электромагнитных импульсов — пока не известно, хотя гипотез множество. В этом году ученые впервые обнаружили такой источник в нашей Галактике. Им оказался магнетар — нейтронная звезда. Поможет ли это открытие разгадать природу феномена, разбиралось РИА Новости.

Ближайший к Земле
В 2007 году американские ученые Дункан Лоример и его аспирант Дэвид Наркевич анализировали архивные записи наблюдений за пульсаром, сделанные радиотелескопом обсерватории Parks. И выявили непонятные пики кратковременной активности, которую вызывают только очень мощные выбросы энергии.

Феномен назвали всплеском Лоримера. Термин “быстрые радиовсплески” (Fast Radio Bursts — FRB) закрепился позже.

“Лоример единственный в мире верил, что это не какая-то помеха, а реальное физическое явление, в целом же к идее относились скептически. Прошло много лет, ученые открыли другие быстрые радиовсплески, и мнение изменилось”, — говорит Александр Родин из Пущинской радиоастрономической обсерватории (ПРАО), руководитель проекта по исследованию FRB.

До недавнего времени специалисты фиксировали немногим больше 150 быстрых радиовсплесков, в основном внегалактических. Но в апреле этого года первый такой импульс обнаружили внутри Млечного Пути. В каталоге он значится как FRB 200428.

Сразу несколько научных групп проследили его до объекта SGR 1935+2154 в созвездии Лисичка в 30 тысячах световых лет от нас. Это магнетар, компактная бешено вращающаяся нейтронная звезда с очень сильным магнитным полем и мощнейшими выбросами гамма- и рентгеновского излучения. Исследователи предполагают, что магнетар как раз и есть источник быстрых радиовсплесков, причем периодически повторяющихся. Три статьи, опубликованные в британском журнале Nature, рассказывают о значимости открытия.

Пущинские ученые тоже зафиксировали FRB 200428 от магнетара SGR 1935+2154, о чем 17 ноября выпустили астротелеграмму. Максимальную активность наблюдали в октябре. Открытие сделала Виктория Федорова, младший научный сотрудник ПРАО, проанализировав архивные данные радиотелескопа “Большая сканирующая антенна” на частоте 111 мегагерц.

“По факту, это самый чувствительный в мире радиотелескоп в своем диапазоне, — поясняет Родин. — Обладая таким мощным инструментом, в 2017 году мы запустили собственный проект по поиску FRB”.

Всего в Пущино обнаружили 11 быстрых радиовсплесков, еще один ждет подтверждения.

Натолкнулся на препятствие
Астрономы шутят: гипотез о природе явления больше, чем самих радиовсплесков. Звучали даже предположения, что это отголоски двигателей инопланетных кораблей. Но сейчас искусственное происхождение FRB всерьез никто не рассматривает.

“Обычно быстрые радиовсплески связывают с выбросами плазмы, которая попадает в конус излучения пульсара и вспыхивает. Допускаю, что причина тому — астероиды, которые пролетают через конусы и там сгорают. В общем, о механизмах говорить рано, надо набрать статистику”, — отмечает Александр Родин.

После открытия галактического FRB 200428 основной гипотезой станет рождение быстрых радиовсплесков в атмосфере магнетаров. “Хотя это не отменяет другие версии”, — уточняет астрофизик.

Осторожно о возможных механизмах явления высказывается Дмитрий Левков из Института ядерных исследований РАН.

“Гипотеза о магнетарах интересна, но светимость FRB на два порядка выше, чем у самых ярких выбросов этих источников. Откуда гипервспышки, никто не знает. Надо построить модель, которая объясняла бы все наблюдательные данные. Ответов пока нет”, — говорит Левков.

В октябре вместе с коллегами он опубликовал на Arxiv.org статью, где описал обнаруженную периодическую структуру у внегалактического FRB 121102. Радиовсплеск приходит со стороны карликовой галактики, расположенной на расстоянии гигапарсека, что уже сравнимо с размером наблюдаемой части Вселенной. Это один из немногих повторяющихся FRB.

“Сигнал поступает на разных частотах сразу. Значит, можно изучить зависимость его интенсивности от частоты, что мы и сделали. Оказалось, есть периодичность — как если бы мы получали сигналы от радиостанций, работающих через каждые сто мегагерц”, — объясняет ученый.

Авторы работы полагают, что такая картина типична для явления дифракции — расщепления сигнала на две части, которые огибают препятствие и сливаются вновь (интерферируют). Так происходит со светом в двухщелевом опыте, только сейчас речь о радиоволне.

Вопрос в том, что же расщепило FRB 121102.

“Возможно, черная дыра с массой на четыре порядка меньше солнечной, — рассуждает Левков. — Такие маленькие реликтовые дыры могли образоваться на заре существования Вселенной. Другой вариант — облако плазмы: оно тоже служит линзой, расщепляющей радиоволну на две”.

Ученые уверены: их открытие поможет исследовать не только необычные космические объекты, но и распределение материи в галактиках. Однако для подтверждения необходимо получить данные других научных групп.
 
Пользователи, которые поблагодарили этот пост: Gorrec, Mika, parisan, batoni123, Серргей

Оффлайн batkov

Re: всё о космосе
« Ответ #80 : 22 Ноябрь 2020, 12:33:54 »
Открыта новая «ископаемая галактика», погребенная внутри нашего Млечного пути
 17:40 21/11/2020
 


Ученые эксперимента Apache Point Observatory Galactic Evolution Experiment (APOGEE) Слоуновского цифрового обзора неба открыли «ископаемую галактику», скрытую глубоко внутри нашей с вами галактики Млечный путь.

Эти результаты могут существенно изменить современные представления об эволюционном пути галактики, в которой мы живем.

Spoiler for Hiden:
Эта гипотетическая «ископаемая галактика» могла столкнуться с Млечным путем 10 миллиардов лет назад, когда наша Галактика была еще «младенцем» по галактическим меркам. Астрономы назвали обнаруженную ими галактику «Геракл», имея в виду, что галактика обрела в составе Млечного пути такое же бессмертие, что и легендарный греческий герой, получивший дар вечной жизни из рук богов.

«Для обнаружения ископаемых галактик, подобных данной, нам приходится определять подробный химический состав и параметры движения десятков тысяч звезд, – сказал Рикардо Скьявон (Ricardo Schiavon) из Ливерпульского университета им. Джона Мурса (Liverpool John Moores University, LJMU), Соединенное Королевство, являющийся одним из ключевых членов исследовательской группы. – Это особенно трудно сделать в случае звезд, расположенных в направлении центра Млечного пути, поскольку они скрыты от наблюдений облаками пыли, заполняющей пространство между звездами. Обзор неба APOGEE позволяет нам проникнуть взглядом сквозь эту пыль и всмотреться в самый центр Галактики».

Обзор неба APOGEE позволяет осуществлять такие наблюдения, поскольку работает не в оптическом, а в ближнем инфракрасном (ИК) диапазоне, и пыль хорошо проницаема для ИК-лучей. На протяжении 10 лет работы обзора неба APOGEE были сняты спектры более чем полумиллиона светил, входящих в состав Млечного пути, включая звезды скрытого от оптических наблюдений пылью ядра Галактики.

Главный автор работы Дэнни Хорта (Danny Horta), магистрант из LJMU, сказал: «Из десятков тысяч звезд, которые мы наблюдали, несколько сотен светил имели радикально отличающиеся химический состав и скорость. Различия были настолько глубокие, что вывод напрашивался сам собой – эти звезды не могли принадлежать Млечному пути, а принадлежали вместо этого другой галактике, с которой наша Галактика столкнулась около 10 миллиардов лет назад».

Согласно авторам, на долю звезд галактики Геракл приходится около одной трети от числа звезд гало Млечного пути – и это свидетельствует о том, что столкновение представляло собой крупное событие в истории эволюции нашей Галактики.
 
Пользователи, которые поблагодарили этот пост: 133048, Virus, parisan, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #81 : 23 Ноябрь 2020, 15:14:04 »
Kocмичecкий aбcтpaкциoнизм M77
 19:29 22/11/2020


Пpocтo нa фoтo зaпeчaтлeн нe тoлькo чeй-тo cпиpaльный миp, нo и мaгнитнoe пoлe этoй гaлaктики, кoтopoe, увы, мы никaк нe cмoжeм увидeть нeвoopужeнным глaзoм.

Heoбычнoe фoтo былo cдeлaнo cтpaтocфepнoй oбcepвaтopиeй ИK-acтpoнoмии SOFIA paбoтaющaя нa бopту caмoлётa «Бoинг-747».Пpи eгo пoдъёмe нa выcoту oкoлo 13 килoмeтpoв кaчecтвo пoлучaeмыx фoтoгpaфий cтaнoвитcя coпocтaвимым c кaчecтвoм cнимкoв, фopмиpуeмыx кocмичecкими oбcepвaтopиями.

Cтoль нeoбычнoe фoтo cдeлaнo нe тoлькo “для кpacoты”.Пpoвeдённыe нaблюдeния мaгнитнoгo пoля M77 пoдтвepждaют тaк нaзывaeмую тeopию вoлн плoтнocти, oбъяcняющую xapaктepную cтpуктуpу cпиpaльныx гaлaктик. Cуть этoй тeopии зaключaeтcя в cущecтвoвaнии дoлгoживущиx квaзиcтaциoнapныx вoлн плoтнocти, пpeдcтaвляющиx coбoй учacтки диcкa гaлaктики, oблaдaющиe пoвышeннoй плoтнocтью.
 
Пользователи, которые поблагодарили этот пост: Astra4A, sogaz, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #82 : 24 Ноябрь 2020, 20:56:45 »
Cpeднee мecивo: тoп 100 oт Xaбблa
 18:30 24/11/2020
 

Глядя нa эту фoтoгpaфию, пoпивaя cвoй кocмичecкий лaттe, мoжнo oднoвpeмeннo нaблюдaть 100 лучшиx фoтoгpaфий Kocмичecкoгo тeлecкoпa имeни Xaбблa. Знaмeнитыe кocмичecкиe пeйзaжи, cфoтoгpaфиpoвaнныe c низкoй oкoлoзeмнoй opбиты, были cклeeны в oдну-eдинcтвeнную кapтину.

Чтoбы cдeлaть этo, 100 лучшиx фoтoгpaфий Kocмичecкoгo тeлecкoпa имeни Xaбблa были пpивeдeны к oдинaкoвым paзмepaм в пикceляx. Дaлee в кaждoй тoчкe вce вeличины интeнcивнocтeй в cooтвeтcтвующиx этoй тoчкe пикceляx нa 100 изoбpaжeнияx были выcтpoeны пo пopядку oт мeньшeгo к бoльшeму, и cpeди ниx былo вычиcлeнo cpeднee или мeдиaннoe знaчeниe, имeннo oнo былo взятo для финaльнoй кapтинки.

Пoлучившaяcя в peзультaтe визуaльнaя aбcтpaкция oтpaжaeт cвeт Bceлeннoй, oкpужённый тьмoй.
 
Пользователи, которые поблагодарили этот пост: Gorrec, Root, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #83 : 25 Ноябрь 2020, 14:28:10 »
Столкновение с Большим Магеллановым Облаком исказило форму Млечного пути
 17:52 24/11/2020
 


Спиральный диск нашей Галактики, состоящий из звезд и планет, растягивается, скручивается и деформируется с невероятной силой под действием гравитации меньшей по размерам галактики – Большого Магелланова Облака (БМО).

Spoiler for Hiden:
Ученые считают, что БМО пересекло границу Млечного пути примерно 700 миллионов лет назад – совсем недавно по космологическим меркам – и ввиду высокого содержания в ней темной материи оказала значительное влияние на структуру нашей Галактики и движение входящих в нее объектов при падении.

Результаты этого столкновения по сей день наблюдаются в нашей Галактике, и их подробное изучение может привести к пересмотру моделей эволюции Млечного пути, пояснили ученые.

БМО, являющееся в настоящее время галактикой-спутником Млечного пути, наблюдается как тусклое облако в южном небе. Предыдущие исследования показали, что БМО, подобно Млечному пути, окружено гало из темной материи – неуловимых частиц, которые окружают галактики и не способны ни поглощать, ни излучать свет, но оказывают при этом значительное гравитационное влияние на движение звезд и галактик во Вселенной.

Используя сложную статистическую модель, которая помогла рассчитать скорость самых далеких звезд Млечного пути, команда астрономов во главе с доктором Майклом Питерсоном (Michael Petersen) из Школы физики и астрономии Эдинбургского университета, Шотландия, открыла, что БМО искажает траектории движения объектов нашей Галактики.

Исследователи нашли, что в результате мощнейшего гравитационного притяжения со стороны гало из темной материи галактики БМО происходит растягивание и скручивание диска Млечного пути так, что скорость движения входящих в его состав объектов в направлении созвездия Пегас составляет 32 километра в секунду.

К своему удивлению, астрономы также нашли, что Млечный путь движется не в направлении БМО, а к точке, отмечающей прежнее положение этой галактики на небе. Согласно авторам, это говорит о том, что само БМО удаляется от Млечного пути с еще большей скоростью, составляющей около 370 километров в секунду. Млечный путь пытается догнать БМО, но «прицел оказывается сбит», поясняют они.

Это открытие поможет при разработке новых методов моделирования для корректного отображения взаимодействия между двумя галактиками, сказал Питерсон.
 
Пользователи, которые поблагодарили этот пост: Admin, Mika, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #84 : 26 Ноябрь 2020, 13:05:42 »
Рентгеновские и радио- вспышки со стороны магнетара 1E 1547.0–5408
 4:52 26/11/2020
 


Международная команда астрономов произвела совместные наблюдения магнетара 1E 1547.0–5408 в рентгеновском и радио-диапазонах в период его повышенной активности. В результате были обнаружены новые рентгеновские и радиовспышки со стороны этого источника.

Магнетары представляют собой нейтронные звезды с экстремально мощными магнитными полями, интенсивность которых превышает интенсивность магнитного поля Земли более чем в один квадриллион раз. Распад магнитных полей магнетаров обусловливает испускание высокоэнергетического электромагнитного излучения, например, в форме рентгеновских лучей или радиоволн.

Spoiler for Hiden:
Расположенный на расстоянии примерно в 14670 световых лет от нас, источник 1E 1547.0– 5408 представляет собой излучающий в радиодиапазоне магнетар с периодом вращения в 2,07 секунды и поверхностным биполярным магнитным полем, характеризуемым индукцией в 640 триллионов гауссов. Наблюдения показали, что на источнике произошло не менее трех вспышек (последняя вспышка наблюдалась в 2009 г.), в ходе каждой из которых имело место несколько высокоэнергетических коротких выбросов.

В новой работе команда под руководством Жанлуки Израэля (Gianluca Israel) из Римской астрономической обсерватории, Италия, представляет анализ результатов наблюдений, проведенных в 2009 г., когда со стороны источника 1E 1547.0–5408 в последний раз наблюдались вспышки. Наблюдения пульсара проводились при помощи 64-метрового телескопа Parkes («Паркс»), а также рентгеновских космических обсерваторий Chandra («Чандра») НАСА и XMM-Newton Европейского космического агентства.

В результате наблюдений было выявлено две радиовспышки, одна из которых произошла спустя одну секунду после яркой рентгеновской вспышки. Каждая из радиовспышек оказалась не связана ни с другими радиовспышками, наблюдавшимися несколькими сутками ранее, ни с рентгеновскими вспышками, указали Израэль и его коллеги. Это добавляет наблюдаемому источнику сходства с таинственными быстрыми радиовсплесками, отмечают авторы.

Поскольку физическая природа быстрых радиовсплесков до сих пор остается загадкой для науки, то исследование, проведенное командой Израэля, может сыграть большую роль в углублении нашего понимания этого загадочного феномена.
 
Пользователи, которые поблагодарили этот пост: Gorrec, Gerakl, batoni123, Mishtis

Оффлайн batkov

Re: всё о космосе
« Ответ #85 : 28 Ноябрь 2020, 12:15:42 »
Луна может удерживать на своих полюсах миллиарды тонн льда
 20:28 27/11/2020
 


Новое исследование показывает, что если бы даже умеренное количество воды, доставленной астероидами на Луну, было бы скрыто в толще, лунные полюса содержали бы гигатонные отложения (1 миллиард метрических тонн) льда в защищенных кратерах и под его поверхностью.

Моделируя более 4 миллиардов лет истории воздействия на Луну, исследователи смогли отследить происхождение и возможное количество льда, которое может быть скрыто от глаз под поверхностью Луны.

«Мы изучили всю историю отложения льда на Луне», – сказал Кевин Кэннон, планетолог из Голдена и ведущий автор нового исследования, опубликованного в журнале AGU Geophysical Research Letters.

Spoiler for Hiden:
Кэннон и его команда использовали консервативные оценки количества воды, которое астероиды могут содержать при столкновении с Луной, и того, сколько ее, вероятно, останется после того, как осядет пыль. Их результаты показывают, что Луна может содержать гораздо больше воды под поверхностью, чем предполагалось ранее.

«Если самые старые регионы были стабильными и накапливали лед в течение миллиардов лет, то в некоторых из них могли быть очень значительные отложения, но вода в них могла быть погребены на глубине до 10 метров и более», – сказал Кэннон.

Несмотря на эту глубину, запасы полярного льда, вероятно, будут доступными для космонавтов во время будущих лунных миссий. Лед в достаточно значительных количествах потенциально может быть использован в качестве питьевой воды, кислорода и ракетного топлива.

Ученые впервые предположили наличие воды на Луне за много лет до того, как Нил Армстронг и Эдвин «Базз» Олдрин ступили ногой на ее поверхность. Луна испещрена кратерами, некоторые из которых достаточно глубоки, чтобы их гребни отбрасывали постоянные тени, под которыми лед, защищенный от постоянного натиска солнечного ветра, скапливался потенциально миллиарды лет.

Однако, несмотря на доказательства его существования, ученые только недавно подтвердили, что наш ближайший сосед содержит воду в изобилии. Недавние исследования предоставили первые убедительные доказательства наличия льда в освещенных солнцем частях Луны, где он, вероятно, заперт в виде льда, созданном сильными ударами, или находится в небольших количествах между крупинками лунной пыли.

Однако большая часть льда на Луне находится в ловушке на полюсах, где света мало, а температура остается ниже -163 ° C.

 Ученые провели ряд прямых наблюдений за льдом на полюсах Луны, но из-за их крайней древности – большая часть льда на поверхности образовалась более 3 миллиардов лет назад во время зарождающихся стадий развития Луны – большая часть льда была покрыта обломки от ударов астероидов или были захоронены на глубинах, недоступных для обнаружения спутниковыми ультрафиолетовыми и радиолокационными устройствами.

Следовательно, оценка количества льда на Луне была сложной задачей. Большинство исследований, проведенных за последние несколько десятилетий, делают вывод, что отложения на Луне имеют лишь неглубокий слой снега или льда толщиной около метра.

Однако, исходя из последних оценок, считается, что даже кратеры среднего размера на полюсах могут содержать огромное количество льда.
 
Пользователи, которые поблагодарили этот пост: Admin, Mika, parisan, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #86 : 29 Ноябрь 2020, 16:02:10 »
Земля быстрее движется и находится ближе к черной дыре на новой карте Галактики
 14:43 29/11/2020
 


Земля движется быстрее на 7 километров в секунду и находится на 2000 световых лет ближе к сверхмассивной черной дыре (СМЧД), расположенной в центре Млечного пути. Но не волнуйтесь, это не означает, что наша планета падает на черную дыру. Эти изменения являются результатом уточнения модели Млечного пути на основе новых наблюдательных данных, включая каталог объектов, наблюдаемых на протяжении более чем 15 лет при помощи японского радиоастрономического проекта VERA.

Spoiler for Hiden:
Проект VERA (VLBI Exploration of Radio Astrometry) был запущен в 2000 г. с целью составления трехмерной карты скоростей объектов и пространственных структур Млечного пути. Обзор неба VERA использует метод, называемый интерферометрией, чтобы объединить данные, получаемые при помощи радиотелескопов, размещенных по территории Японского архипелага, и достичь того же разрешения, которое имел бы телескоп диаметром 2300 километров. Точность измерений, достигаемая при таком разрешении и составляющая 10 микроугловых секунд, в теории достаточна для того, чтобы рассмотреть с Земли монетку, помещенную на поверхность Луны.

Поскольку Земля расположена внутри нашей галактики Млечный путь, мы не можем наблюдать Галактику снаружи. Астрометрия, точное измерение расстояний до объектов и параметров их движения, является важным инструментом, позволяющим понять крупномасштабную структуру Галактики и наше место в ней. В этом году был опубликован первый астрометрический каталог от миссии VERA, содержащий данные по 99 объектам.

 Исходя из данных астрометрического каталога VERA и результатов других наблюдений, астрономы составили карты расстояний до объектов и параметров их движения. Эти карты показывают, в частности, что расстояние от Земли до центра Галактики, где находится СМЧД, составляет всего лишь 25 800 световых лет, а не 27 700 световых лет, как считалось ранее. Карта скоростей космических объектов демонстрирует, что Земля движется вокруг центра Галактики со скоростью 227 километров в секунду, а не 220 километров в секунду, как было принято считать до появления каталога с астрометрическими данными от этого обзора неба.
 
Пользователи, которые поблагодарили этот пост: Root, parisan, boomer44, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #87 : 30 Ноябрь 2020, 13:05:53 »
Новый транзиентный сверхъяркий рентгеновский источник в галактике NGC 7090
 17:58 29/11/2020
 


Международная команда астрономов обнаружила новый сверхъяркий рентгеновский источник (ultraluminous X-ray source, ULX) в галактике NGC 7090. Этот объект, получивший обозначение NGC 7090 ULX3, был обнаружен при помощи космического аппарата Swift («Свифт») НАСА.

Spoiler for Hiden:
Объекты класса ULX представляют собой точечные источники на небе, которые являются настолько яркими в рентгеновском диапазоне, что каждый из них испускает больше излучения, чем один миллион звезд, подобных Солнцу, во всех длинах волн. Они являются менее яркими, чем активные ядра галактик, однако характеризуется более высокой устойчивой светимостью, по сравнению с любым известным науке звездным процессом. Хотя к настоящему времени проведено уже немало исследований свойств ULX-источников, их базовая природа до сих пор продолжает оставаться загадкой для астрономов.

Обычно в родительской галактике находится не более одного ULX-источника, однако в некоторых галактиках было зарегистрировано по несколько таких объектов. Галактика NGC 7090, расположенная на расстоянии около 31 миллиона световых лет от Земли, является одним из примеров такой галактики. Предыдущие наблюдения показали, что в этой галактике лежат два ULX-источника, NGC 7090 ULX1 и NGC 7090 ULX2, характеризуемых высокими уровнями переменности и транзиентности.

В новой работе, исходя из наблюдений, проведенных при помощи спутника Swift, астрономы под руководством Доминика Уолтона (Dominic Walton) из Кембриджского университета, Соединенное Королевство, сообщают об обнаружении еще одного ULX-источника в галактике NGC 7090. Этот источник, получивший название NGC 7090 ULX3, характеризуется красным смещением z = 0.00282, а его максимальная светимость составляет около 6,0 дуодециллиона эргов в секунду. До перехода в режим ULX этот источник имел стабильную светимость, составляющую порядка 0,1 дуодециллиона эргов в секунду. Наблюдаемый период активности данного ULX-источника составляет свыше 7 месяцев, отмечают астрономы.

Согласно авторам, такой высокий уровень переменности источника NGC 7090 ULX3 в большом временном масштабе указывает на то, что он может представлять собой систему пульсара. Дальнейшие наблюдения этого ULX-источника помогут наложить дополнительные ограничения на свойства источника, что позволит глубже понять его природу и природу ULX-источников в целом, пояснили авторы.
 
Пользователи, которые поблагодарили этот пост: Gorrec, sogaz, бобруйко, batoni123

Оффлайн batkov

Re: всё о космосе
« Ответ #88 : 01 Декабрь 2020, 14:43:52 »
  Самая яркая в гамма-диапазоне двойная звезда Галактики может содержать магнетар
 18:22 30/11/2020


Команда исследователей под руководством представителей Физико-математического института имени Кавли (Kavli Institute for the Physics and Mathematics of the Universe, Kavli IPMU), Япония, проанализировала ранее собранные данные, чтобы выяснить истинную природу одного компактного объекта – который, как оказалось, представляет собой вращающийся магнетар, тип нейтронной звезды с экстремально мощным магнитным полем – движущегося в составе системы LS 5039, являющейся самой яркой двойной звездной системой в Галактике.

Spoiler for Hiden:
Эта команда, возглавляемая Хироки Йонедой (Hiroki Yoneda) из Kavli IMPU, также показывает, что процесс ускорения частиц, происходящий в системе LS 5039, вызывается взаимодействиями между плотными звездными ветрами, исходящими со стороны основной, массивной звезды системы, и сверхмощными магнитными полями вращающегося магнетара.

Двойные системы, излучающие в гамма-диапазоне, состоят обычно из массивной (20-30 масс Солнца) и компактной звездных компонент. Компактный объект может быть представлен черной дырой или нейтронной звездой, причем на наличие нейтронной звезды указывает характерный периодический сигнал в рентгеновском диапазоне. Такие системы были открыты лишь относительно недавно, в 2004 г., когда стали возможными наблюдения относительно обширных участков неба в экстремально высокоэнергетическом тераэлектронвольтном диапазоне. При наблюдениях в этом диапазоне такие двойные системы пульсируют с периодами от нескольких суток до нескольких лет.

Двойные системы, излучающие в гамма-диапазоне, являются одними из самых мощных космических ускорителей частиц: в то время как ускорение частиц до тераэлектронвольтных энергий остатками сверхновых, являющимися известными космическими ускорителями частиц, занимает десятки лет, двойные системы, излучающие в гамма-диапазоне, способны разогнать электроны до таких энергий в течение всего лишь нескольких десятков секунд.

В своей работе Йонеда и коллеги проанализировали данные наблюдений системы LS 5039 в рентгеновском диапазоне при помощи космических обсерваторий Suzaku и NuSTAR и обнаружили периодический сигнал, указывающий на нейтронную звезду. Исходя из периода вращения компактной компоненты, ученые оценили мощность ее магнитного поля и установили, что она должна составлять около 10^11 Тесла, что является экстремально высоким значением для нейтронных звезд и соответствует магнитному полю «самого сильного магнита Вселенной» – магнетара.

Полученные результаты помогут глубже понять природу двойных звездных систем, излучающих в гамма-диапазоне, отмечают авторы.
 
Пользователи, которые поблагодарили этот пост: Root, parisan, batoni123, nina54

Оффлайн batkov

Re: всё о космосе
« Ответ #89 : 03 Декабрь 2020, 12:06:12 »
Новая Персея 2020 ведет себя необычно!
 18:15 02/12/2020
 


Новая звезда, вспыхнувшая неделю назад в созвездии Персея ведет себя совершенно необычно! Она была обнаружена независимо двумя группами любителей астрономии: из Японии и России.

На астроферме “Астроверты” с момента открытия Новой ведутся ее постоянные фотометрические наблюдения. Результаты представлены ниже.

Обычно, Новая звезда достигает максимума блеска в течении первых двух суток после начала вспышки и потом по асимптоте угасает. А тут мы видим периодические изменения яркости.

Фотометрия проводилась с помощью телескопа ED80 и камеры ST-8300M (выдержки по 5 и 3 сек). Авторы фотометрии: Кирилл Соколовский, Оля Смолянкина и Стас Короткий.
 
Пользователи, которые поблагодарили этот пост: Root, 133048